Cut Elimination for Shallow Modal Logics
نویسندگان
چکیده
Motivated by the fact that nearly all conditional logics are axiomatised by so-called shallow axioms (axioms with modal nesting depth ≤ 1) we investigate sequent calculi and cut elimination for modal logics of this type. We first provide a generic translation of shallow axioms to (one-sided, unlabelled) sequent rules. The resulting system is complete if we admit pseudo-analytic cut, i.e. cuts on modalised propositional combinations of subformulas, leading to a generic (but sub-optimal) decision procedure. In a next step, we show that, for finite sets of axioms, only a small number of cuts is needed between any two applications of modal rules. More precisely, completeness still holds if we restrict to cuts that form a tree of logarithmic height between any two modal rules. In other words, we obtain a small (PSPACE-computable) representation of an extended rule set for which cut elimination holds. In particular, this entails PSPACE decidability of the underlying logic if contraction is also admissible. This leads to (tight) PSPACE bounds for various conditional logics.
منابع مشابه
Syntactic cut-elimination for a fragment of the modal mu-calculus
For some modal fixed point logics, there are deductive systems that enjoy syntactic cut-elimination. An early example is the system in Pliuskevicius [15] for LTL. More recent examples are the systems by the authors of this paper for the logic of common knowledge [5] and by Hill and Poggiolesi for PDL [8], which are based on a form of deep inference. These logics can be seen as fragments of the ...
متن کاملSemantic cut-elimination for two explicit modal logics
Explicit modal logics contain modal-like terms that label formulas in a way that mimics deduction in the system. These logics have certain proof-theoretic advantages over the usual modal logics, perhaps the most important of which is conventional cut-elimination. The present paper studies tableau proof systems for two explicit modal logics, LP and S4LP. Using a certain method to prove the corre...
متن کاملGeneric Modal Cut Elimination Applied to Conditional Logics
We develop a general criterion for cut elimination in sequent calculi for propositional modal logics, which rests on absorption of cut, contraction, weakening and inversion by the purely modal part of the rule system. Our criterion applies also to a wide variety of logics outside the realm of normal modal logic. We give extensive example instantiations of our framework to various conditional lo...
متن کاملCut elimination in coalgebraic logics
We give two generic proofs for cut elimination in propositional modal logics, interpreted over coalgebras. We first investigate semantic coherence conditions between the axiomatisation of a particular logic and its coalgebraic semantics that guarantee that the cut-rule is admissible in the ensuing sequent calculus. We then independently isolate a purely syntactic property of the set of modal ru...
متن کاملA Systematic Proof Theory for Several Modal Logics
The family of normal propositional modal logic systems are given a highly systematic organisation by their model theory. This model theory is generally given using Kripkean frame semantics, and it is systematic in the sense that for the most important systems we have a clean, exact correspondence between their constitutive axioms as they are usually given in a Hilbert style and conditions on th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011